4,431 research outputs found

    Constructing sonified haptic line graphs for the blind student: first steps

    Get PDF
    Line graphs stand as an established information visualisation and analysis technique taught at various levels of difficulty according to standard Mathematics curricula. It has been argued that blind individuals cannot use line graphs as a visualisation and analytic tool because they currently primarily exist in the visual medium. The research described in this paper aims at making line graphs accessible to blind students through auditory and haptic media. We describe (1) our design space for representing line graphs, (2) the technology we use to develop our prototypes and (3) the insights from our preliminary work

    Towards designing robust coupled networks

    Get PDF
    Natural and technological interdependent systems have been shown to be highly vulnerable due to cascading failures and an abrupt collapse of global connectivity under initial failure. Mitigating the risk by partial disconnection endangers their functionality. Here we propose a systematic strategy of selecting a minimum number of autonomous nodes that guarantee a smooth transition in robustness. Our method which is based on betweenness is tested on various examples including the famous 2003 electrical blackout of Italy. We show that, with this strategy, the necessary number of autonomous nodes can be reduced by a factor of five compared to a random choice. We also find that the transition to abrupt collapse follows tricritical scaling characterized by a set of exponents which is independent on the protection strategy

    Gas hydrate concentration estimates from chlorinity, electrical resistivity and seismic velocity

    Get PDF
    Gas hydrate beneath the N. Cascadia continental slope off Vancouver Island occurs as a regional diffuse layer above the BSR and as local high concentrations in large vent or upwelling structures. Regional concentrations of gas hydrate beneath the N. Cascadia continental slope off Vancouver Island have been estimated earlier using multichannel seismic, seafloor electrical, and IODP Leg 146 downhole data. The concentrations of between 15 and 30% of pore saturation in a 100 m thick layer above the BSR are much higher than estimated elsewhere where there is good data, especially the Blake Ridge and central Cascadia off Oregon on ODP Leg 204. Although both of these other studies involved different sediment environments, a careful re-evaluation of the N. Cascadia estimates seemed desirable. We have re-evaluated the methods used to calculate the gas hydrate concentrations from pore-water chlorinity (salinity), electrical resistivity, and seismic velocity, describing in detail the assumptions and uncertainties. Use of the pore-water chlorinity/salinity and electrical resistivity directly have low reliability because of the effect on the no-hydrate reference of hydrate formation and dissociation, and the effect of pore fluid freshening by clay dehydration. At ODP Site 889/890 hydrate concentrations range from 5–10% to 30–40%, depending on the no-hydrate reference salinity used. Use of core salinity data along with the downhole and seafloor electrical resistivity data allows calculation of both the in situ reference salinity and the hydrate concentrations. The most important uncertainty in this method is the relation between resistivity and porosity, i.e., Archie’s Law parameters. Significantly different relations were determined from the ODP Leg 146 core and downhole log data, the log data resistivity-porosity relation giving much lower concentrations. Finally, seismic velocities from sonic-logs and multichannel data can be used to calculate gas hydrate concentrations, if an appropriate no-hydrate velocity-depth profile can be estimated. A velocity-hydrate concentration relation is also required. Depending on which no-hydrate/no-gas velocity baseline is used, estimated hydrate concentrations range from as low as 5% to above 25% saturation. In spite of having three nearly independent methods of estimating hydrate concentrations, it is concluded that the data allow regional concentrations in the 100 m layer above the BSR from less than 5% to over 25% saturation (3-13% of sediment volume). ODP drilling in the region scheduled for the fall of 2005 should help resolve the uncertainties

    Weed hosts of Heterodera glycines: the soybean cyst nematode

    Get PDF

    An annotated bibliography of weeds as reservoirs for organisms affecting crops. Ia. Nematodes

    Get PDF

    Zinc oxide films grown by galvanic deposition from 99% metals basis zinc nitrate electrolyte

    Get PDF
    The use of relatively low purity zinc nitrate for electrochemical deposition of compact ZnO films is attractive for large scale production because of the cost saving potential. ZnO films were grown on SnO2:F and magnetron sputtered ZnO:Al templates using a three electrode potentiostatic system in galvanic mode. The electrolyte consisted of a 0.1 M zinc nitrate solution (either 99.998% or 99% purity) and 1 mM aluminium nitrate for extrinsic doping, when required. Moderate deposition rates of up to 0.9 nm s−1 were achieved on ZnO:Al templates with lower rates of up to 0.5 nm s−1 on SnO2:F templates. Observation of SEM images of the films revealed a wall-like morphology whose lateral thickness (parallel to the substrate) reduced as aluminium was added to the system either in the electrolyte or from the substrate. However, pre- deposition activation of the template by applying a negative voltage (approximately −2 V) allowed the growth of compact films even for the low purity electrolyte. The optical band gap energy of intrinsically doped films was lower than that of the Al doped films. The composite electrical conductivity of all the films studied, as inferred from sheet resistance and Hall effect measurements of the ZnO/template stacks was much less than that of the uncoated templates. A strong E2 (high) mode at around 437 cm−1 was visible in the Raman spectra for most films confirming the formation of ZnO. However, both the Raman modes and XRD reflections associated with wurtzite ZnO diminished for the Al doped films indicating a high level of mainly oxygen related defects. Based on these data, further studies are underway to improve the doping efficiency of aluminium, the crystalline structure and thus the conductivity of such films

    Quantum point contact conductance in NINS junctions

    Full text link
    The effect of an insulating barrier located at a distance aa from a NS quantum point contact is analyzed in this work. The Bogoliubov de Gennes equations are solved for NINS junctions (S: anysotropic superconductor, I: insulator and N: normal metal), where the NIN region is a quantum wire. For a≠0% a\neq0, bound states and resonances in the differential conductance are predicted. These resonances depend on the symmetry of the pair potential, the strength of the insulating barrier and aa . Our results show that in a NINS quantum point contact the number of resonances vary with the symmetry of the order parameter. This is to be contrasted with the results for the NINS junction, in which only the position of the resonances changes with the symmetry.Comment: 5 pages, 5 Figures, RevTex

    Frohlich mass in GaAs-based structures

    Full text link
    The Frohlich interaction is one of the main electron-phonon intrinsic interactions in polar materials originating from the coupling of one itinerant electron with the macroscopic electric field generated by any longitudinal optical (LO) phonon. Infra-red magneto-absorption measurements of doped GaAs quantum wells structures have been carried out in order to test the concept of Frohlich interaction and polaron mass in such systems. These new experimental results lead to question the validity of this concept in a real system.Comment: 4 pages, 3 figure

    Temperature measurements and thermal gradient estimates on the slope and shelf edge region of the Beaufort Sea, Canada

    Get PDF
    In situ temperature measurements were conducted at 63 gravity-core stations during the 2013 expedition with the CCGS Sir Wilfrid Laurier in the Canadian Beaufort Sea. Outriggers attached to the outside of the gravity core-barrel were used to mount portable miniature temperature loggers (MTL) for down-core in situ temperature measurements. Several sub-regions were investigated during the expedition including two shelf-slope crossings, three mud volcano-type expulsion features, as well as two canyon sites. The last site visited was at the Gary Knolls, just east of the Mackenzie Trough at water depths of less than 100 m. Overall, temperature data obtained from the MTLs were of high quality at most stations and the data acquisition technique was proven to be robust and easy to adapt in the Arctic. However, depth determination for each logger position remains the largest challenge as no additional pressure sensor was used with the MTLs. Instead, depths were estimated based on the apparent core penetration and the geometry of the outriggers. The most significant result from this work is the discovery of the very large apparent geothermal gradients associated with the two expulsion features (EF) Coke Cap and the mud volcano at 420 m water depth. Temperatures measured within the top 2.5 meter below seafloor suggest geothermal gradients of up to 2.94ÂșC/m (Station 96, 420m EF) and 1.37 ÂșC/m (Station 58, Coke Cap EF). Away from the centre of the EFs, thermal gradients decrease to values of 0.5ÂșC/m for Station 99 at the 420 m EF, and 0.92ÂșC/m at Station 21 at the Coke Cap EF. Temperature data across the slope-shelf transect and the two transects across the canyon heads did not reveal considerable geothermal gradients, but show a water-depth dependent trend in temperature. From deep to shallow water, temperature appear to decrease until the most negative temperature values are found on the shelf itself at water depths of ~100 m (-1.2 to -1.4ÂșC). Overall, data from the top 1.0 to 1.5 meter below seafloor are likely affected by seasonal variations in the water column temperature and may not be used to define geothermal gradients. With an optimal full penetration of the core barrel, the deepest temperature data are from ~2.3 mbsf, which limits the accuracy of the estimated geothermal gradients as only few data points (2 - 4) can be used in the calculations
    • 

    corecore